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Abstract
A multi-product, multi-period, multi-site supply chain production and transportation plan-
ning problem, in the textile and apparel industry, under demand and price uncertainties is
considered in this paper. The problem is formulated using a two-stage stochastic program-
ming model taking into account the production amount, the inventory and backorder levels
as well as the amounts of products to be transported between the different plants and cus-
tomers in each period. Risk management is addressed by incorporating a risk measure into
the stochastic programming model as a second objective function, which leads to a multi-
objective optimization model. The objectives aim to simultaneously maximize the expected
net profit and minimize the financial risk measured. Two risk measures are compared: the
conditional-value-at-risk and the downside risk. As the considered objective functions con-
flict with each other’s, the problem solution is a front of Pareto optimal robust alternatives,
which represents the trade-off among the different objective functions. A case study using
real data from textile and apparel industry in Tunisia is presented to illustrate the effectiveness
of the proposed model and the robustness of the obtained solutions.
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1 Introduction

The textile industry plays a significant role in themanufacturing and production base of many
nations (Jatuphatwarodom et al. 2018). For instance, the textile and apparel manufacturing
process includes different sub-processes such as knitting, embroidery and cloth making.
Each process may involve more than one plant, establishing a multi-site supply network
environment. Therefore, companies need to reconfigure their production policy and to take
into consideration the coordination between the different entities of the supply network.

Due to highly today’s competitive markets, textile and apparel companies are facing high
pressure to manage their supply chains (SC). To achieve this goal, it is crucial to make a
rigorous supply chain planning (SCP) related to the decisions from the procurement of raw
materials to the shipping of finished products to the customer. SCP can be classified into
three categories following the planning horizon: strategic, tactical, and operational (Chopra
and Meindl 2010). In this work, the tactical level of the SCP is considered. According to
Esmaeilikia et al. (2016), the use of tactical SC planning models with multiple flexibility
options can help manage the usual operations efficiently and effectively, whilst improve the
SC resiliency in response to inherent environmental uncertainties.

Products in textile and apparel industry are usually characterized byunpredictable demand.
Indeed, during the planning horizon, customer demand can increase unexpectedly or drop
sharply. Hence, demand fluctuations could be determined only at the end of the planning
horizon. The under-estimation of overall demand leads to lost sales and unsatisfied cus-
tomer. However, the over-estimation of the products demand results in high production and
inventory costs. On the other hand, textile and apparel business is characterized by random
selling prices since it depends on customer demand. Indeed, when the product demand rises,
the companies tend to decrease the selling prices in order to match supply with demand.
Accurately incorporating uncertainties into the SC production planning problem will result
in better decision-making and will improve the expected net profit. According to Chiu and
Choi (2016), if there are some sources of uncertainty such as demand uncertainty and supply
uncertainty, the performance of the SCwill also be affected and become uncertain.Moreover,
in practice, most of the decision makers are risk averse and they would like to improve the
net profit as well as to manage the risk of having low net profit. Therefore, it is crucial to
generate a robust SCP solution, which can manage the resulting risk from demand and price
uncertainties. The main idea in risk management is to incorporate the trade-off between the
performance measure and the risk measures into the decision maker process, which leads to
a multi-objective optimization problem.

In this paper, a comprehensive framework for a multi-product, multi-period, multi-site
SCP problem under customer demands and selling prices uncertainties is proposed. A two-
stage stochastic programming model is developed in order to incorporate uncertainties into
the supply network decision-making process and to maximize the expected net profit. To
solve the stochastic problem, decision variables such as the amounts of products to be pro-
duced and the volumes of products to be transported between the different manufacturing
facilities are considered as first-stage decisions. Second-stage decisions are related with the
inventory and backorder level as well as the finished products amounts to be transported to
the customers. Furthermore, two risk measures are incorporated in the mathematical model
in order to reduce the probability of incurring in low net profit. This formulation provides to
the decision maker the opportunity to choose the most appropriate risk indicator. Then, two
multi-objective optimization problems are obtained. In the first model, the net profit of the
SCP and the conditional-value-at-Risk “CVaR” are optimized. Second, the downside risk

123



www.manaraa.com

Annals of Operations Research (2018) 271:551–574 553

“DRisk” is optimized simultaneously with the expected net profit. In order to demonstrate
the effectiveness of the proposed models and the robustness of the generated solutions, a real
case study from textile and apparel industry in Tunisia is presented. The main contribution of
this paper is to provide to the planner a front of Pareto optimal robust solutions for amulti-site
SCP and transportation problem in textile and apparel industry that considers simultaneously
demand and price uncertainties. This front of Pareto represents the trade-off between the
different objectives. In addition, the decision maker can select the best alternatives according
to his preferences and the appropriate risk management model.

The remainder of the paper is organized as follows. Background of the considered problem
is presented in Sect. 2. The problem description is presented in Sect. 3, and the stochastic
formulation of the considered problem is detailed in Sect. 4. Section 5 introduces the risk
management model. The solution approach is described in Sect. 6. Computational results
from a real world case study of textile and apparel supply network are presented in Sect. 7.
Finally, conclusions and future research directions are drawn in Sect. 8.

2 Literature review

A lot of attempts have been made in the literature to model and optimize textile and apparel
planning problems (Toni and Meneghetti 2000; Leung et al. 2003; Safra 2013; Mok et al.
2013; Felfel et al. 2016a, b; Ren et al. 2017). Toni and Meneghetti (2000) studied a textile
and apparel SC production planning problem. They investigated the impact of material avail-
ability, production planning period length, as well as the relation between customer orders
and production orders concerning color mix on system performance from a time-based point
of view. A real example from a textile and apparel company in Italia was treated using a
simulation model. Leung et al. (2003) addressed a multi-objective multi-site medium-term
aggregate production planning problem using a goal programming approach. The consid-
ered objective functions are the maximization of profit as well as the utilization of import
quota and the minimization of costs of workers hiring and laying-off. A real case study
from a multinational lingerie company in Hong Kong is considered to show the effectiveness
of the proposed model. Safra (2013) developed an integrated approach for production and
distribution planning at tactical and operational levels in textile and apparel industry. The
proposed approach aims to emphasize the flexibility of the production system by the imple-
mentation of a safety production capacity at the tactical planning level. Two mathematical
models were developed to solve the tactical and the operational level of the planning problem.
These models aim to minimize the total cost of a three-echelon SC as well as to satisfy the
customer demand on time. Mok et al. (2013) proposed planning algorithms for automatic
job allocations based on group technology and genetic algorithms in apparel manufacturing.
Single-run and two-run genetic algorithms were suggested to optimize the job allocation
problem. Real production data are used to show the effectiveness of the proposed method.
Felfel et al. (2016a) addressed a multi-product multi-site production and transportation plan-
ning problem in the context of a Tunisian textile and apparel supply network. The authors
proposed a multi-objective optimization formulation, which aims to minimize the total cost
and tomaximize the product quality level simultaneously. From the literature reviewed above,
all these researches are dealing with deterministic modeling approach that assumes that all
parameters of the optimization problem are known with certainty. In practice, the textile SCP
problem is characterized by many sources of uncertainty such as customer demand, unit cost
and selling price.
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Several works in textile and apparel industry dealt with one stochastic parameter such
as uncertain customer demand (Karabuk 2008; Kong 2008; Ait-alla et al. 2014; Felfel el al.
2016b). Many other works took into account more than one random parameter such as unit
production cost, unit inventory cost, labor cost, shortage cost and customer demand (Leung
et al. 2005, 2007). Leung et al. (2005) noted as a perspective of their work that considering
selling prices can offer scope for making the production planning a more beneficial basis
for decision-making. On the other hand, products selling price are usually considered in the
literature as deterministic parameter and it is not treated as source of uncertainty despite of
its uncertain and negotiable character. To the best of authors’ knowledge, there is no prior
work that considers selling price uncertainty in textile and apparel SCP problem.

Although the product price uncertainty is not considered in textile industry, the product
price is treated as a source of uncertainty in other fields. Wang and Fang (2001) proposed an
aggregate productionplanningproblemwithmultiple objectiveswhere theproduct price,mar-
ket demands, production capacity,work force level, andunit cost to subcontract are considered
as fuzzy sets. Chen and Lee (2004) addressed a multi-product, multi-stage, multi-period
scheduling problem for a multi-echelon supply chain under market demand and product
price uncertainties. The uncertain demands were modeled as a number of discrete scenarios
with given probabilities while the product prices are described as fuzzy variables. Awudu
and Zhang (2013) proposed a multi-product biofuel SC production planning problem under
demand and price uncertainties. Demands of end products follow normal probability distri-
bution with known mean and standard deviation, while the end product price uncertainty is
molded using the geometric Brownian motion. In that paper, customer demand and product
price are modeled using jointly distributed discrete random variables.

A lot of attention has been given in the literature to incorporate uncertainty into textile
SC decision-making process in order to improve the economic objective. Many approaches
have been applied in the literature to cope with uncertainty such as robust optimization
approach, fuzzy programming approach, stochastic programming approach, and stochastic
dynamic programming approach. The two-stage stochastic programming approach (Birge
and Louveaux 1997) is widely used in the literature to integrate uncertainty in mathematical
programming model. Typically, the two-stage stochastic programming approach comprises
two types of decisions: the first stage decisions that have to bemade “here and now” before the
revelation of uncertainty and the second stage decisions that can be made after the revelation
of uncertain events (“wait and see” decisions). Hence, the objective function is equal to the
combination of the first stage variables and the second stage expected recourse variables.

The stochastic programming approach has been successfully applied in textile and apparel
industry (Leung et al. 2005; Kong 2008; Karabuk 2008). Leung et al. (2005) developed a
two-stage stochastic programming model in order to minimize the total cost of a multi-
site aggregate medium-term production planning problem under an uncertain environment.
The first-stage decisions include the amount of production in regular-time and overtime, the
amount of subcontracted products as well as the number of required workers, hired work-
ers and laid-off workers. The second-stage decisions involve the amount of inventory and
the level of under-fulfilment products. A real case study from a multinational lingerie com-
pany situated in Hong Kong was given in order to show the effectiveness of the proposed
model. Kong (2008) addressed a multi-period aggregate production planning problem under
seasonal demand uncertainty in apparel industry. A stochastic linear programming model
was developed to minimize the total cost involving production cost, outsourcing cost and
inventory cost. Karabuk (2008) proposed a stochastic programming model for a multi-period
yarn production planning problem under demand uncertainty in textile industry. The author
considered a single objective function, which aims to minimize the total cost consisting of
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rover changeover cost, inventory carrying cost and frame changeover cost. A two-step prepro-
cessing algorithm was developed to address the computational complexities of the obtained
large-scale optimization problem. Although these works tackle the uncertainty involved in
textile and apparel planning problems, the robustness of the generated solutions is not guar-
antee since they do not consider risks.

The main drawback of the stochastic programming approach is that it is a risk neutral
approach, which does not allow the control of the unfavorable outcomes. However, the
decision maker may have different attitudes toward the risk. Hence, the financial risk should
be controlled and managed according to the decision maker preferences. Leung et al. (2007)
dealt with a multi-site production planning problem under uncertainty for a multinational
lingerie company located in Hong Kong. A robust optimization model based on the variance
as the risk measure was proposed in order to minimize the total costs including production
cost, inventory cost, labor cost and workforce changing cost. The authors mentioned as a
critic of their work that the application of the robust optimization might generate higher costs
than stochastic programming approach because the penalty cost is considered in the robust
optimization formulation. Ait-alla et al. (2014) addressed a production planning problem
under demand uncertainty in fashion apparel industry. The robust model originally developed
by Leung et al. (2007) was adopted as the benchmark mathematical formulation based on
the conditional value at Risk as a risk measure. The authors considered a single objective
function, which aims to maximize the total profit revenue while satisfying aCVaR constraint.
Felfel et al. (2016b) proposed a fuzzy decision-making approach for a multi-objective, multi-
period, multi-product, multi-site, multi-stage SCP problem under demand uncertainty. The
stochastic programming model aims to minimize simultaneously the expected total cost, the
lost customer demand level and the downside risk.

3 Problem statement

This study is motivated by the planning problem faced by medium and small enterprises
located in south of Tunisia in textile and apparel industry. The structure of supply network
taken as a reference in this study is shown in Fig. 1. The textile and apparel manufacturing
process consists of five main stages: knitting and dyeing, cutting, embroidery, cloth making
and packaging. Each production stage includes one plant except the cloth making stage,
which contains four plants forming a multi-site supply network manufacturing environment.
In such structure, the production activities should be well coordinated in order to fulfill the
customer demand, to improve the capacity utilization of the manufacturing plants and to
avoid excessive inventories.

The four first processes are intermediate operations providing semi-finished products.
However, cloth making converts the semi-finished products into finished products that are
packaged and delivered to the customers. The supply network is formed of a central plant
(Textile-International “TE-INTER”) and five subcontractors. TE-INTER is composed of
three internal production departments: cutting, cloth making and packaging. TE-INTER
subcontracts part of his activities for two main reasons. The first reason is the lack of skills
and resources in the fields of embroidery, printing and dyeing. The second reason is the need
of expansion of production capacity of cloth making in order to satisfy customer demands.
In other words, TE-INTER can plan and execute some of the operations of cloth making and
leave the remainder production activities to one or more of his subcontractor. A distribution
lead time is taken into account for the transportation of products between the different entities
of the network.
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Fig. 1 The multi-site supply network environment of textile and apparel industry

In textile and apparel industry, products are usually characterized by volatile demand and
short life cycle. The selling prices of finished products are also randomwith knownprobability
distributions. It should be noted that products prices depend on customer demand. Indeed,
when the stochastic demand of the products increases the proposed price decreases.

The main objective of this problem is to maximize the expected net profit as well as
to minimize the financial risk associated with the optimal plan of the textile and apparel
network. The expected net profit is obtained by subtracting the expected total costs from the
total incomes. The total cost includes production, inventory, backorder and transportation
costs. Decisions to be made involve the amount of products to be produced at each plant,
the amount of inventory of finished or semi-finished products, the backorder level and the
flows of materials between the different entities of the supply network taking into account
customer demand and selling price uncertainties.

4 Two-stage stochastic programmingmodel

Due to the uncertainty of products demand and selling price, the deterministic model is inap-
propriate to improve the economic performance. Thus, a two-stage stochastic programming
model is applied in order obtain the optimal planning of the textile and apparel supply net-
work under uncertainties. It is assumed that the uncertain parameters are considered in the
stochastic programming model as a set of discrete scenarios associated with known probabil-
ity. It is worthwhilementioning that the stages of the stochastic programingmodel correspond
to different steps of decision making and it is not related to time periods. In the two-stage
stochastic programming model, the decision variables are divided into two sets. The pro-
duction amounts in each manufacturing plant and the quantity of products to be transported
between upstream and downstream plants are made “here and now” before the true value of
uncertainties are revealed. Other decision variables such as inventory and backorder size, flow
of finished products to be shipped to the customer are postponed in a “wait-and-see” mode
after the revelation of uncertainties. The objective of the optimization model is to determine
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Fig. 2 Decision taken in each stage of the stochastic model

the first-stage decisions variables in a manner that the expected net profit, calculated based
on the first-stage and the second-stage decision variables, is maximized. Figure 2 illustrates
the decisions taken in each stage of the stochastic programming model.

4.1 Mathematical formulation

To formulate themathematicalmodel, the following indices parameters anddecision variables
are introduced:

Indices

Li Set of direct successor plant of i
STj Set of stages of the manufacturing process (j=1, 2,…, N)

i, i′ Production plant index (i, i′ =1, 2,…, Ij) where plant i belongs to stage n and plant i′
belongs to stage n+1

k Product index (k �1, 2,…, K)
t Period index (t=1, 2,…, T )
s Scenario index (s �1, 2, …, S)

Decision variables

Pikt Production amounts of product k at plant i in period t in regular-time
Ssikt Inventory level of product k at the end of period t in plant i corresponding to

scenario s
J Ssikt Inventory level of semi-finished product k at the end of period t in plant i

corresponding to scenario s
BDs

kt Backorder amounts of finished product k for scenario s in period t
T Ri→i ′,kt Amounts of product k transported from plant i to i’ in period t
T Rs

i→CUS,kt Amounts of product k transported from the last plant i to customer for scenario
s in period t

Qi,k Amounts of product k received by plant i for scenario s in period t
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Parameters

cpik Unit production cost for product k in regular-time at plant i
cti→i ′,k Unit transportation cost between plant i and i’ of production for product k
cti→CUS,k Unit transportation cost between the last plant i and the customer
csik Unit inventory cost of finished or semi-finished product k at plant i
cbk Unit backorder cost of product k
prskt Unit selling price of finished product k for scenario s in period t
cappit Production capacity at plant i regular-time in period t (min)
capsit Storage capacity at plant i in period t
capti→i ′,t Transportation capacity at plant i in period t
Ds
kt Demand of finished product k for scenario s in period t

bk Time needed for the production of a product k (min)
DL Delivery time of the transported quantity
π s The occurrence probability of scenario s where

∑s
s�1 π s � 1

ydi Production yield at plant i

Formulation

(1)

Max E [N PV ] �
S∑

s�1

π s
T∑

t�1

K∑

k�1

I∑

i�1

(prsk T Rs
i→CUS,kt − csik(S

s
ikt + J Ssikt )

− cti→CUS,kT Rs
i→CUS,kt − cbk BDs

k,t )

−
T∑

t�1

K∑

k�1

I∑

i�1

(cpik Pikt + cti→i ′,kT Ri→i ′,kt )

(2)Ssik,t � Ssik,t−1 + Pikt −
∑

i ′∈Li

T Ri→i ′,kt , ∀i ∈ STj<N , ∀k, t, s

(3)
I∑

i �1

Ssik,t �
I∑

i�1

Ssik,t−1 + Pikt − T Rs
i→CUS,kt , ∀i ∈ STj�N , k, t, s

(4)J Ssik,t � J Ssik,t−1 + Qikt − Pikt , ∀i, k, t, s

(5)BDs
kt � BDs

k,t−1 + Ds
kt − T Rs

i→CUS,kt , ∀k, t, s

(6)Qi ′k,t+DL �
∑

i ′∈Li
T Ri→i ′,kt , ∀i, k, t, s

(7)
K∑

k �1

bk ∗ Pikt ≤ cappit∀i, t, ∀i, t

(8)
K∑

k �1

Sikt + J Sikt ≤ capsit , ∀i, t, s
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(9)
K∑

k �1

T Ri →i ′,kt ≤ captrit , ∀i, t, s

(10)Pikt , S
s
ikt , J S

s
ikt , T Ri →i ′,kt , T Rs

i →CUS,kt , Qi,k, BDs
kt ≥ 0, ∀i, k, t, s

The objective function (1) aims to maximize the expected profit E[NPV ] calculated by sub-
tracting the total expected cost from the expected income. The occurrence pbability π s of
each scenario s is taken into account in order to calculate the expected income and the
expected total cost. The total cost involves the production cost of each plant, the products
inventory cost, the backorder cost, the transportation cost of semi-pducts between upstream
and downstream plants and transportation cost of finished products to customers. Constraint
(2) is the balance for the inventory level of products in each production stage except the last
stage. Constraint (3) denotes the balance equation for end of period inventory in the last pro-
duction stage. Constraint (4) represents the inventory balance for the semi-finished products.
Constraint (5) represents the balance equation for shortage in finished product demand. Con-
straint (6) provides the balance for transportation between the different manufacturing plants.
Constraint (7) guarantees that the production capacity is respected. Constraint (8) limits the
products inventory level. Constraint (9) makes sure that the amounts of transported prod-
ucts cannot exceed the transportation capacity. Constraint (10) represents the non-negativity
restriction on the decision variables.

5 Risk managementmodels

The risk management is an important issue when developing the stochastic programming
model in order to control the risk of having low net profits. However, the stochastic program-
ming approach aims to optimize the expected net profit without reflecting the variability over
different scenarios. Indeed, the stochastic approach is risk-neutral and does not guarantee
that the stochastic solution will perform at a certain level over all realizations of uncertain
parameters. Therefore, it is crucial to extend the abovementioned stochastic model to a risk
management model. According to DuHadway et al. (2017), it is critical to choose the appro-
priate strategies for SC risk management to avoid disruptive. The underlying idea of risk
management is to incorporate the trade-off between expected net profit and financial risk
within the decision making which leads to a multi-objective optimization problem.

The variance (Markowitz 1952) is a popular risk measure widely used in the literature
to control the variability of performance. However, this risk measure has two significant
drawbacks (Bonfill et al. 2004). First, the variance is a symmetric measure and many optimal
solutions could be discarded in the attempt of reducing the dispersion of the expected values
around the mean. The second drawback is that the variance introduces nonlinearities into the
mathematical model, which increases the problem complexity.

5.1 Managing CVaR

In this paper, the CVaR, proposed by Uryasev and Rockafellar (2001), Rockafellar and Urya-
sev (2002), is defined as the financial risk metric. Gebreslassie et al. (2012) demonstrated
that the CVaR management is very effective in reducing the probability of high costs.

The value-at-risk (VaR) is a risk measure, which represents a percentile of a loss distribu-
tion. Given the same confidence level α, the VaR is a lower bound for CVaR (Sarykalin et al.
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2008). In this paper, VaR is defined as the minimal profit of a production plan over a specific
time horizon at a specified confidence level (α) It should be noted that α belongs to [0, 1].
Furthermore, a non-negative deviation ψs between the scenario profit N PV s and the VaR
value is defined. If the N PV s is greater than VaR,ψs should be enforced to zero. The above
relationships can be formulated as follows:

VaR ≥ 0 (11)

ψs ≥ VaR − N PV s, ∀s (12)

ψs ≥ 0, ∀s (13)

The CVaR at the confidence level α can be formulated as follows:

CVaR(x, α) � VaR +

∑

s∈S
π s · ψs

1 − α
(14)

So, the CVaR management model can be formulated by the following equations:

max E[NPV]

min CVaR(x, α) � VaR +

∑

s∈S
π s ·ψs

1−α

subject to Eqs.(2)−(10);
VaR ≥ 0
ψs ≥ VaR − N PV s, ∀s
ψs ≥ 0, ∀s

(15)

5.2 Managing downside risk

The second proposed approach aims to minimize the downside risk (DRisk) of having low
net profits. The DRisk can be formulated as follows:

DRiskΩ � E[ϕs] (16)

where ϕs �
(

Ω − N PV s i f Ω > N PV s

0 otherwise
∀s

Ω ≥ 0 (17)

where ϕs is a positive variable that measures deviation between a target � and the scenario
profit value (N PV s). Downside risk () is defined as the expected value of the positive variable
ϕs . So, the DRisk management model can be formulated by the following equations:

max E[NPV]
min RiskΩ � ∑

s
π sϕs

subject to Eqs. (2)−(10);
Ω ≥ 0
ϕs ≥ Ω − N PV s, ∀s,
ϕs ≥ 0, ∀s

(18)
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6 Solution approach

The solution of the above problem is a front of Pareto optimal solutions. The e-constraint
method, first presented by Haimes et al. (1971), can be applied to solve the multi-objective
optimization problem. In this method, one of the objective functions is selected to be opti-
mized and the other objective functions are transformed into constraints with allowable
bounds ε. The CVaR management model corresponding to the e-constraint method can be
modeled as below:

max E[NPV]
CVaR(x, α) ≤ ε

subject to Eqs. (2)−(10);
VaR ≥ 0
ψs ≥ VaR − N PV s, ∀s
ψs ≥ 0, ∀s

(19)

The DRisk management model corresponding to the e-constraint method is given by:

max E[NPV]
DRiskΩ ≤ ε

subject to Eqs. (2)−(10);
Ω ≥ 0
ϕs ≥ Ω − N PV s, ∀s,
ϕs ≥ 0, ∀s

(20)

Subsequently, the bound level ε is successively altered in order to generate the entire front
of Pareto optimal solutions.

7 Computational results

In order to demonstrate the effectiveness of the proposed model and the robustness of the
obtained solutions, a real-world numerical example from textile and apparel industry is
presented. The industrial case is described in Sect. 7.1. Then, the obtained results are detailed
in Sect. 7.2. First, the results of the two-stage stochastic programming model are compared
with the deterministic model in order to show the effectiveness of the stochastic programming
model. Subsequently, we apply the CVaR management model described in Sect. 5 and we
discuss the results of maximizing the expected net profit versus minimizing the CVaR. In
addition, the DRisk management model is applied and the results are compared to those of
the CVaR management model.

The solution approaches were implemented in LINGO15.0 package program and MS-
Excel 2010 with an INTEL(R) Core (TM) and 2 GB RAM.

7.1 Industrial case description

A numerical example from a real-world textile and apparel supply network in Tunisia is
developed. The planning horizon covers 2 months and the length of the considered period
is 1 week. Based on past sales records and future long-term and short-term contracts, the
future economy can be assumed to be one of four scenarios: poor, fair, good or boom. The
customer demand and unit selling prices of the finished products P1 and P2 under each
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Table 1 Finished product demand and unit selling price

Period Probability Product 1 Product 2

Demand Price Demand Price

T1→T5 – 0 0 0 0

T6 0.15 2600 16.1 2450 18.33

0.35 2050 16.93 2010 18.99

0.25 1630 17.56 1670 19.5

0.25 1310 18.04 1430 19.86

T7 0.25 2900 15.65 2750 17.88

0.3 2200 16.7 2120 18.82

0.25 1800 17.3 1640 19.54

0.2 1590 17.62 1520 19.72

T8 0.2 3100 15.35 2900 17.65

0.35 2750 15.88 2500 18.25

0.3 2010 16.99 1850 19.23

0.15 1650 17.53 1600 19.6

Table 2 Plant indices and
designation

Plants Designation

A1 Knitting and dyeing
subcontractor

A2 Cutting (TE-INTER)

A3 Embroidery subcontractor

A4 Cloth making (TE-INTER)

A5 Cloth making subcontractor #1

A6 Cloth making subcontractor #2

A7 Cloth making subcontractor #3

A8 Packaging (TE-INTER)

scenario are detailed in Table 1. It should be noted that customer demand and selling prices
are two joint discrete randomvariables. Hence, the total number of scenarios for the stochastic
SCP problem is equal to 43�64. The different plants indices are given in Table 2. Table 3
describes the available capacity of production in each plant. It is noted that the production
capacity differs from one period to another because of the absenteeism. In Table 4, the
production and inventory unit costs are given. Table 5 reports the transportation unit cost and
the transportation capacity. Table 6 provides information about the processing time of the
different manufacturing processes.

7.2 Results

In this section, the proposed formulation is tested according to different computational prop-
erties. First, the influence of realistic problem size is investigated. Then, sensitivity analysis
related to production yield is performed. After that, the effectiveness of the stochastic pro-
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Table 3 Production capacity (min)

Plants T1 T2 T3 T4 T5 T6 T7 T8

A1 57,600 54,720 57,600 60,480 54,720 54,720 51,840 54,720

A2 28,800 31,680 34,560 25,920 31,680 23,040 28,800 23,040

A3 43,200 40,320 46,080 37,440 40,320 40,320 43,200 40,320

A4 86,400 77,760 74,880 83,520 77,760 83,520 89,280 83,520

A5 31,680 34,560 25,920 28,800 34,560 37,440 31,680 37,440

A6 54,720 48,960 46,080 60,480 48,960 63,360 51,840 63,360

A7 17,280 20,160 20,160 14,400 20,160 17,280 23,040 17,280

A8 17,280 20,160 14,400 17,280 20,160 23,040 20,160 23,040

Table 4 Unit production cost and inventory unit cost

Unit
cost

Product A1 A2 A3 A4 A5 A6 A7 A8

(cp) P1 1.72 0.72 0.9 1.75 1.9 1.65 1.5 0.38

P2 2.5 0.57 1.42 2.6 2.3 2.83 2.1 0.29

(cs) P1, P2 0.3 0.1 0.15 0.12 0.1 0.11 0.1 0.2

Table 5 Unit cost and capacity of
transportation

Capacity Unit cost (P1, P2)

A1→A2 9100 0.6

A2→A3 8700 0.45

A3→A4 7500 0.37

A3→A5 7500 0.52

A3→A6 7500 0.65

A3→A7 7500 0.34

A5→A8 2500 0.49

A6→A8 5000 0.35

A7→A8 1500 0.27

A8→Customer 10,000 0.5

Table 6 Processing time (min)

Product A1 A2 A3 A4 A5 A6 A7 A8

P1 8 4 4.5 11 10.5 12 13 3

P2 10 2.5 6.5 16.5 15.5 14 16 2.5

posed programmingmodel is studied. In addition, the developed riskmanagementmodels are
applied. Finally, the solution quality is investigated according to the applied risk management
model and the problem parameters.
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7.2.1 Problem size effect

In order to test the efficiency of the formulation and the resolutionmethod, different instances
are generated. These instances are obtained by varying the number of periods and products.
The corresponding number of variables and constraints as well as the CPU time are detailed
in Table 7. Figure 3 shows the evolution of the CPU time for the different instances. One
can notice from Fig. 3 and Table 7 that the CPU time for computing the Pareto of optimal
solutions grows exponentially with problem size, especially when the number of products
is greater than 30. Moreover, even for very important problem size, where the number of
variables reaches 1,702,977, the CPU time necessary for resolution is only one hour.

Table 7 Size of the tested instances

Instance Number of
products

Number of
periods

Number of
variables

Number of
constraints

CPU time (s)

1 1 8 16,986 11,972 3

2 1 16 38,732 21,124 5

3 2 8 33,661 23,634 10

4 2 16 76,748 41,156 16

5 5 8 83,286 57,540 33

6 5 16 170,862 101,252 75

7 10 8 166,161 114,500 108

8 10 16 341,097 201,412 324

9 30 8 497,661 342,340 708

10 50 8 829,161 570,180 1902

11 30 16 1,022,037 602,052 2084

12 50 16 1,702,977 1,002,692 3870
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Fig. 3 Evolution of the CPU time according to the problem size
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Table 8 Variation of the expected
total cost by changing the
production yield value

Production yield
(ydi)

Expected profit
E[NPV ]

Variation of the
expected profit (%)

1 102,786 –

0.95 102,740 0.04

0.9 102,695 0.09

0.85 102,649 0.13

0.8 102,604 0.18

0.75 102,558 0.22

0.7 102,475 0.30

0.65 102,330 0.44

0.6 102,130 0.64

7.2.2 Sensitivity of the production yield

A sensitivity analysis related to production yield is performed in order to understand the
consequences of a change in the production yield on the objective values. Many tests have
been conducted by changing the values of the production yield for uncertain and fixed selling
price. The obtained solutions as well as the variation of the expected profit are reported in
Table 8. The variation of the expected profit is computed as follows:

Variation (%) � 100

∣
∣
∣
∣
E[N PV ](ydi�1) − E[N PV ](ydi )

E[N PV ](ydi�1)

∣
∣
∣
∣ (21)

As shown in Table 8, the obtained results are not too sensitive regarding to the change in the
production yield value since the variation of the expected profit does not exceed 0.64% for
all the tests. Thus, we will consider that the value of production yield is equal to one in the
rest of the paper.

7.2.3 The two-stage stochastic model investigation

In this section, the solution of the two-stage stochastic model (TSM) and the solution of
deterministic model (DTM) are firstly compared to show the effectiveness of the stochastic
programming model. As it can be seen in Fig. 4, the expected net profit (NPV) of TSM is
significantly higher than the DTM one. In addition, the expected selling price of TSM is
greater than the DTM one. Moreover, the expected inventory and backorder costs of TSM
are lower than the DTM costs. However, the production and transportation costs are higher
for TSM than DTM in order to satisfy more customer demand. These results suggest that
obvious profit can be achieved using the stochastic programming model.

In order to evaluate the impact of uncertainties on the planning process, we use two
stochastic well-known measures: the expected value of perfect information (EVPI) and the
value of stochastic solution (VSS) (Birge and Louveaus 1997). The EVPI is defined as the
maximum value of loss when the information about the future is incomplete. It can be
formulated as:

EV P I � WS −T SP (22)
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Table 9 Stochastic programming parameters

WS TSP EEV VSS=TSP−EEV EVPI=WS−TSP EVPI/WS
(%)

VSS/EEV
(%)

118,443.5 102,786 96,595.54 6190.46 15,657.5 13.22 6.41

WS denotes the optimal solution of the “wait and see” model and TSP denotes the opti-
mal solution of two-stage stochastic programming model. VSS is the difference between the
optimal solution of the two-stage programming model and the optimal solution of the deter-
ministic model (EEV). If the VSS is positive, then the solution of stochastic programming
model is better than the solution of the deterministic model. It is formulated as follows:

V SS � T SP − EEV (23)

The EVPI is then computed by: EVPI�WS−TSP�15,657.5.
As shown in Table 9, the EVPI/WS ratio shows the significant impact of demand and price

uncertainties on the obtained solution (13.22%). Hence, it is crucial to have better forecast
about the random demand and price scenarios. Then, the VSS is calculated: VSS�6190.46.
According to this result, using the TSM can lead to better profit by 6.41% more than the
deterministic model, as reported in Table 9. It is clear that the stochastic programming model
outperforms the deterministic model for the considered SCP problem.

7.2.4 Risk management models study

First, we apply the CVaR management model developed in Sect. 5. The trade-off between
the CVaR measure and the expected net profit is investigated by applying the e-constraint
method. Three Pareto curves are obtained for different confidence levels (α�0.9, α�0.95
and α�0.99), as shown in Fig. 4. The solutions presented by the Pareto curves are feasible
but they do not outperform the front of Pareto optimal solutions. It is worth to noting that
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Fig. 5 Pareto curve for the expected net profit and CVaR

each solution of the front of Pareto implies a specific SC configuration and a set of planning
decisions.

As it is seen in Fig. 5, there is a significant conflict between the expected net profit and the
CVaR since improvements in net profit can only be achieved by the increasing of the CVaR.
We can also observe from this Figure that when the confidential level α increases the CVaR
value increases too by the definition of the CVaR. Thus, increasing the value of α denotes a
higher level of risk and leads to a more risk averse policy.

In order to compare the obtained results after and before managing theCVaR, we draw the
net profit distributions as illustrated in Fig. 6. Here, we choose the confidence level as 0.95.
As it is seen in Fig. 6, the distribution of net profit before CVaRmanagement presents a non-
negligible probability of incurring in low net profit due to the dispersion of net profit values in
the right-hand side. It is also noted that the distribution of profit forCVaR=85,990.4 presents
more low net profit than the distribution for CVaR=84,724.78. Moreover, the cumulative
distributions of net profit over the different scenarios are presented in Fig. 7. This Figure
indicates that the cumulative curves obtained after managing the CVaR lie below the curve
before managing the CVaR for low net profit values. However, these two curves intersect the
curve before CVaR management at some point.

Afterwards, we apply theDRisk management model developed in Sect. 5. Figure 8 shows
the trade-off between the DRisk measure and the expected net profit. It helps the deci-
sion maker to select the suitable configuration. The Pareto illustrates the significant conflict
between DRisk and the expected net profit. Figure 9 presents the comparison between the
net profit distributions before and after DRisk management model application. Two DRisk
values are considered, which are 594 and 694. The distribution of net profit before DRisk
management presents a non-negligible probability of incurring in low net profit due to the
dispersion of net profit values in the right-hand side. One can note that, after applying the risk
management model, the probability of having high values of net profit increases and reaches
12%.
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In order to emphasize the reduction of the CVaR as well as the DRisk and the expected
net profit for the CVaR management model and the DRisk management model, a metric is
defined as follow:

Reduction gap (%) � 100
Value after risk managment − Value before risk managment

Value before risk managment
(24)

Table 10 illustrates the influence of the variation of the demand shapes and selling price
uncertainty on the expected net profit and the CVaR value. The first solution S1 represents
the objective functions values before riskmanagement. After applying theCVaRmanagement
model, the reduction of the expected profit is insignificant in the case of increasing demand
with fixed selling price, and does not exceed 0.4%. It increases in the case of uncertain selling
price, but still modest. The lowest reduction of the expected profit is observed in the case of
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variable demandwith uncertain selling price (0.007%). The highest reduction of the expected
profit is observed as well in the case of variable demand but with fixed selling price (0.57%).
From one solution to another, the reduction of the expected profit increases especially in the
case of variable demand. Moreover, one can notice that this reduction, in the case of fixed
selling price, is lower than that of the case of uncertain selling price. Besides, the reduction
of the CVaR is more significant and almost the same in all cases. It varies from 0.5 to 2.64%.
The highest and lowest reduction of the CVaR are observed in the case of increasing demand.

Table 11 illustrates the influence of the variation of the demand shapes and selling price
uncertainty on the expected net profit and the DRisk value. The application of the DRisk
management model increases the reduction of the expected profit, but it stills small and does
not exceed 0.75%. One can notice that the reduction of the net profit in the case of variable
demand, with fixed and uncertain selling prices, is almost the same for both risk management
models. Like for the CVaRmanagement model, the lowest reduction of the expected profit is
observed in the case of variable demand with uncertain selling price. However, the highest
reduction of the expected profit is observed in the case of decreasing demand with fixed
selling price. The reduction of the DRisk is very important and reaches 37% in the case
of variable demand with uncertain selling price. In addition, it is noticed that the DRisk is
reduced especially in the case of uncertain selling price.

In conclusion, both risk management models slightly reduce the expected net profit. How-
ever, using the DRisk management model decreases notably the financial risk.

8 Conclusion

In this work, we developed a two-stage stochastic programming model to incorporate the
demand and price uncertainties within the decision making process of a multi-site SCP
problem from textile and apparel industry.

This paper contributes to the literature from three main respects. First, it proposes multi-
objective stochastic programming model to simultaneously maximize the expected net profit
and minimize the financial risk. Second, unlike previous works, the developed model takes
into account the demand uncertainty as well as selling price uncertainty simultaneously.
Finally, the consideration of two risk measures and their comparison allow the decision
maker to choose the suitable configuration for the studied case.

The computational results of the studied case show that the stochastic model outperforms
the deterministic model and leads to higher profit by 6.41%. In order to find better SCP
solution, two risk management models were developed. First, the CVaR is incorporated into
the stochastic programming model as a second objective, which leads to a multi-objective
optimization model. Second, the DRisk is incorporated into the stochastic programming
model as a second objective. For both risk management models, a set of Pareto-optimal
solutions is generated, which demonstrates the tradeoff between objective functions while
considering demand uncertainty as well as selling price uncertainty. These Pareto offers
different useful configuration for the decision maker, who will select the suitable one.

Despite the CVaR management approach seems to be effective in reducing the expected
net profit risk and identifying robust SCP solutions, the DRisk management model is more
effective. In fact, the DRisk management approach decreases notably the financial risk for
fixed as well uncertain selling prices. Therefore, it is more profitable to use DRisk measure
than CVaR measure.
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The extension of this study is to evaluate and select the best alternative among the front
of Pareto optimal solutions according to the decision maker preferences.
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